index
API Overview
#
Modulesml
ml.dataframes
: The dataframes module provides a lot of common operations for dataframe handlingml.evaluation
ml.evaluation.classification
: The classification module allows users to evaluate and visualize classifiersml.images
ml.images.conversion
: The conversion module allows users to transform images freelyml.images.explorer
: The image explorer module provides standard helper functions to explore and visualize imagesml.images.io
: The io module provides standard helper functions to load images from diskml.neuralnetworks
ml.neuralnetworks.keras
: The keras module provides additions to work and visualize Keras neural networksml.timeseries
ml.timeseries.timeops
: The timeops module provides helpful functionality for timeseries datasets
#
Classes- No classes
#
Functionsdataframes.distribute_class
: Makes sure a DataFrame is returned with an equal class distributiondataframes.keep_numeric_features
: Takes the DataFrame and removes all non-numeric columns or featuresdataframes.one_hot_encode
: Take a categorical column and pivots the DataFrame to add columns (0 or 1 value) for every categorydataframes.plot_features
: Plots the distribution of the relevant columns of a DataFramedataframes.shuffle
: Shuffles the DataFrame and returns itdataframes.to_timeseries
: This is deprecated and it is advised to use the timeseries.set_timeseries function for thisclassification.evaluate_model
: Will predict and evaluate a model against a test setclassification.plot_roc_curve
: Will plot the Receiver Operating Characteristic (ROC) Curve for binary classifiersconversion.crop
: Crops an image based on the specified sizeconversion.get_fragments
: Scans an image and return the resulted parts as a list of image sectionsconversion.prepare
: Takes an image and applies preformattingconversion.to_blackwhite
: Transforms an image to a black & white imageexplorer.show_image
: Visualizes an imageexplorer.visualize
: Visualizes the images in the image_sets in a gridexplorer.visualize_classes
: Visualizes the images from the image_set in a grid and print the corresponding class on the chartsio.load_image_from_disk
: Loads an image from file, applying preformattingio.load_image_from_url
: Loads an image from a given url, applying preformatting and supporting file cachingio.load_images
: Loads the images from a specific folderio.load_images_from_dataframe
: Loads a set images from disk, based on the file name in a Data Frame.keras.enable_gpu
: Enables Keras to run on the GPUtimeops.add_time_reference
: This method will add a reference column to the DataFrame that contains the value of reference column of n items beforetimeops.combine_time_ranges
: This method combines multiple timeseries (as DataFrame) and removes the overlapping time sectionstimeops.get_windows
: This method take a DataFrame and returns a set of time windows of a specific length and a given column, eventually grouped by another columntimeops.set_timeseries
: Transforms the dataframe to a timeseries enabled dataframetimeops.time_slice
: This method takes a time series DataFrame and only returns the time slice, based on the start & end date
This file was automatically generated via lazydocs.