ml.evaluation.classification
module ml.evaluation.classification
The classification module allows users to evaluate and visualize classifiers
evaluate_model
#
function evaluate_model( fitted_model, X_test: <built-in function array>, y_test: <built-in function array>, show_roc: bool = False) โ <built-in function array>
Will predict and evaluate a model against a test set
Args:
- `fitted_model` (model): The already fitted model to be tested. Sklearn and Keras models have been tested
- `X_test` (np.array): The test set to calculate the predictions with
- `y_test` (np.array): The output test set to evaluate the predictions against
- `show_roc` (bool): This will plot the ROC curve in case of a binary classifier
Returns:
- `np.array`: The predicted (y_pred) values against the model
plot_roc_curve
#
function plot_roc_curve( y_pred: <built-in function array>, y_test: <built-in function array>)
Will plot the Receiver Operating Characteristic (ROC) Curve for binary classifiers
Args:
- `y_pred` (np.array): The predicted values of the test set
- `y_test` (np.array): The actual outputs of the test set
Returns:
- `float`: The ROC_AUC value
This file was automatically generated via lazydocs.